
3Dlabs Software Release Note

Page 1

3Dlabs®

Software
Release Note

OpenGL Extensions for GLINT
& PERMEDIA

OpenGL Extension Appendices
This note collects together appendices for various extensions supported by the
OpenGL Installable Client Driver for the GLINT and the PERMEDIA reference
boards.

3Dlabs Software Release Note

Page 2

Change History

Issue Date Change
1 22-Jan-97 New Release

Document r16ext.doc

© Copyright 3Dlabs® Inc Ltd. 1995-1997. All rights reserved worldwide.

The material in this document is the intellectual property of 3Dlabs. It is provided solely for information.
You may not reproduce this document in whole or in part by any means. While every care has been taken in
the preparation of this document, 3Dlabs accepts no liability for any consequences of its use. Our products
are under continual improvement and we reserve the right to change their specification without notice.

3Dlabs is the worldwide trading name of 3Dlabs Inc. Ltd.

3Dlabs is a registered trademark of 3Dlabs Inc. Ltd

GLINT and PERMEDIA are registered trademark s of 3Dlabs.

OpenGL is a trademark of Silicon Graphics, Inc.. Windows, Win32 and Windows NT are trademarks of
Microsoft Corp.

All other trademarks are acknowledged.

3Dlabs Inc.
181, Metro Drive Suite 520

San Jose, CA 95110
United States

Tel: (408) 436 3455
Fax: (408) 436 3458

3Dlabs Ltd.
Meadlake Place

Thorpe Lea Road. Egham
Surrey, TW20 8HE

United Kingdom

Tel: +44 (0) 1784 470555
Fax: +44 (0) 1784 470699

3Dlabs Software Release Note

Page 3

APPENDIX A
OpenGL Paletted Texture Extension Support

This appendix describes the programming steps required for OpenGL applications to take advantage of the
support in the GLINT 500TX for palette textures. The implementation is based upon the extension recently
proposed by Microsoft (refer to Appendix B for further details).

In the example code for downloading a 4-bit indexed texture below, note the following:

• Extensions to OpenGL (in this case the functions glColorTableEXT, glGetColorTableEXT etc..) are not
directly exported by the OpenGL dynamic link library. Instead the name of the required function (for
example “glGetColorTableEXT”) is passed as a string to the Win32 function wglGetProcAddress which
returns a suitable function pointer . The function is invoked by dereferencing this pointer with the
appropriate arguments.

• The GLINT 500TX only supports 1, 2 and 4-bit indexed textures with an on-chip texture LUT of 16

entries of RGBA (with each component in the table stored to 8-bits precision).

• PERMEDIA only supports 4-bit indexed textures with an on-chip texture LUT of 16 entries of RGB (the

alpha component is unused. Each component in the table is stored to 5-bits precision, the bottom 3-bits are
ignored internally).

• When downloading the palette texture by calling glTexImage1D or glTexImage2D, the format parameter

must be set to GL_COLOR_INDEX and the components parameter to GL_COLOR_INDEX4_EXT (in
the case of a 4-bit texture). There is no way at present of presenting the texel indices pre-packed to the
OpenGL call (i.e. each index occupies a full data type, e.g. a byte if GL_UNSIGNED_BYTE is specified
for the type parameter even though two 4-bit indices could be packed per byte). However the texel indices
are stored packed after downloading into the local buffer memory.

// Add these defines to gl.h

#define GL_COLOR_INDEX1_EXT 0x80E2

#define GL_COLOR_INDEX2_EXT 0x80E3

#define GL_COLOR_INDEX4_EXT 0x80E4

#define GL_COLOR_TABLE_FORMAT_EXT 0x80D8

#define GL_COLOR_TABLE_WIDTH_EXT 0x80D9

#define GL_COLOR_RED_SIZE_EXT 0x80DA

#define GL_COLOR_GREEN_SIZE_EXT 0x80DB

#define GL_COLOR_BLUE_SIZE_EXT 0x80DC

3Dlabs Software Release Note

Page 4

#define GL_COLOR_ALPHA_SIZE_EXT 0x80DD

#define GL_COLOR_LUMINANCE_SIZE_EXT 0x80DE

#define GL_COLOR_INTENSITY_SIZE_EXT 0x80DF

typedef void (APIENTRY * PFNGLCOLORTABLEEXTPROC) (GLenum target,

GLenum internalformat,

GLsizei width,

GLenum format,

GLenum type,

const void *data);

typedef void (APIENTRY * PFNGLCOLORSUBTABLEEXTPROC) (GLenum target,

 GLsizei start,

 GLsizei count,

 GLenum format,

 GLenum type,

 const void *data);

typedef void (APIENTRY * PFNGLGETCOLORTABLEEXTPROC) (GLenum target,

 GLenum format,

 GLenum type,

 const void *data);

typedef void (APIENTRY * PFNGLGETCOLORTABLEPARAMETERIVEXTPROC) (GLenum target,

 Glenum pname,

 int *params);

typedef void (APIENTRY * PFNGLGETCOLORTABLEPARAMETERFVEXTPROC) (GLenum target,

 Glenum pname,

 float *params);

// define a suitable struct for each entry in the texture lut

typedef struct { GLubyte r, g, b, a; } ubLutEntry;

// allocate a variable to hold the table of lut entries

// note the maximum number of entries on the TX500 is 16

ubLutEntry texLUT[16];

// initialise the lut

// e.g. from black

texLUT[0].r = 0; texLUT[0].g = 0; texLUT[0].b = 0; texLUT[0].a = 255;

texLUT[1] ...

texLUT[14] ...

3Dlabs Software Release Note

Page 5

// to white etc..

texLUT[15].r = 255; texLUT[15].g = 255; texLUT[15].b = 255; texLUT[15].a = 255;

// declare a suitable function pointer for updating the texture lut

PFNGLCOLORTABLEEXTPROC fp_glColorTableEXT;

// bind the function pointer by passing the name of the function as a string

fp_glColorTableEXT = (PFNGLCOLORTABLEEXTPROC) wglGetProcAddress("glColorTableEXT");

// download the lut by dereferencing the function pointer

(*fp_glColorTableEXT)(GL_TEXTURE_2D, GL_RGBA, 16, GL_RGBA, GL_UNSIGNED_BYTE, texLUT);

...

// initialise the texture image data

imageWidth = 256;

imageHeight = 128;

// allocate a byte per texel index

imageBuffer = (GLubyte*) malloc(imageWidth * imageHeight);

...

// in this example download a 4-bit indexed texture

// (but note that each 4-bit (or 2 or 1 bit) index occupies a full byte

// when passed to OpenGL

// but ends up packed 2 (or 4 or 8) to a byte in the TX local buffer)

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glTexImage2D(GL_TEXTURE_2D, 0,

GL_COLOR_INDEX4_EXT,

imageWidth, // must be power of 2 (+ 2*border)

imageHeight, // must be power of 2 (+ 2*border)

0, // no border in this example

GL_COLOR_INDEX, // must be color index format

GL_UNSIGNED_BYTE, // byte per index

imageBuffer);

...

// now repeated calls to glColorTableEXT followed by a flush will

// instantly update the texture colors without a download

// e.g change all blacks in the texture to yellow:

3Dlabs Software Release Note

Page 6

texLUT[0].r = 255; texLUT[0].g = 255; texLUT[0].b = 0;

(*fp_glColorTableEXT)(GL_TEXTURE_2D, GL_RGBA, 16, GL_RGBA, GL_UNSIGNED_BYTE, texLUT);

glFlush();

3Dlabs Software Release Note

Page 7

This is an example routine for querying the extensions available using glGetString:

int checkPaletteTextureEXTAvailable(void)

{

 char seps[] = " ,";

 char *token;

 static char extStr[128];

 const GLubyte *pExtStr;

 pExtStr = glGetString(GL_EXTENSIONS);

 strcpy(extStr, pExtStr);

 token = strtok(extStr, seps);

 while(token != NULL) {

 // While there are tokens in "string"

 if (strcmp(token, "GL_EXT_paletted_texture") == 0)

 return TRUE;

 // Get next token:

 token = strtok(NULL, seps);

 }

 return FALSE;

}

Restrictions
None

3Dlabs Software Release Note

Page 8

APPENDIX B
Windows NT OpenGL Group

OpenGL Paletted Texture Extension

Author: Drew Bliss (Microsoft Corp)

Version 0.8 March 1, 1996

Name

EXT_paletted_texture

Name Strings

GL_EXT_paletted_texture

Dependencies

GL_EXT_paletted_texture shares routines and enumerants with GL_SGI_color_table with the minor modification that EXT
replaces SGI. In all other ways these calls should function in the same manner and the enumerant values should be identical.
The portions of GL_SGI_color_table that are used are:

ColorTableSGI, GetColorTableSGI, GetColorTableParameterivSGI, GetColorTableParameterfvSGI.

COLOR_TABLE_FORMAT_SGI, COLOR_TABLE_WIDTH_SGI, COLOR_TABLE_RED_SIZE_SGI,
COLOR_TABLE_GREEN_SIZE_SGI, COLOR_TABLE_BLUE_SIZE_SGI, COLOR_TABLE_ALPHA_SIZE_SGI,
COLOR_TABLE_LUMINANCE_SIZE_SGI, COLOR_TABLE_INTENSITY_SIZE_SGI.

Portions of GL_SGI_color_table which are not used in GL_EXT_paletted_texture are:

CopyColorTableSGI, ColorTableParameterivSGI, ColorTableParameterfvSGI.

COLOR_TABLE_SGI, POST_CONVOLUTION_COLOR_TABLE_SGI,
POST_COLOR_MATRIX_COLOR_TABLE_SGI, PROXY_COLOR_TABLE_SGI,
PROXY_POST_CONVOLUTION_COLOR_TABLE_SGI,
PROXY_POST_COLOR_MATRIX_COLOR_TABLE_SGI, COLOR_TABLE_SCALE_SGI,
COLOR_TABLE_BIAS_SGI.

Overview

EXT_paletted_texture defines new texture formats and new calls to support the use of paletted textures in OpenGL. A
paletted texture is defined by giving both a palette of colors and a set of image data which is composed of indices into the
palette. The paletted texture cannot function properly without both pieces of information so it increases the work required to
define a texture. This is offset by the fact that the overall amount of texture data can be reduced dramatically by factoring
redundant information out of the logical view of the texture and placing it in the palette.

Paletted textures provide several advantages over full-color textures:

3Dlabs Software Release Note

Page 9

• As mentioned above, the amount of data required to define a texture can be greatly reduced over what would be needed for
full-color specification. For example, consider a source texture that has only 256 distinct colors in a 256 by 256 pixel
grid. Full-color representation requires three bytes per pixel, taking 192K of texture data. By putting the distinct colors
in a palette only eight bits are required per pixel, reducing the 192K to 64K plus 768 bytes for the palette. Now add an
alpha channel to the texture. The full-color representation increases by 64K while the paletted version would only
increase by 256 bytes. This reduction in space required is particularly important for hardware accelerators where texture
space is limited.

• Paletted textures allow easy reuse of texture data for images which require many similar but slightly different colored
objects. Consider a driving simulation with heavy traffic on the road. Many of the cars will be similar but with different
color schemes. If full-color textures are used a separate texture would be needed for each color scheme, while paletted
textures allow the same basic index data to be reused for each car, with a different palette to change the final colors.

• Paletted textures also allow use of all the palette tricks developed for paletted displays. Simple animation can be done,
along with strobing, glowing and other palette-cycling effects. All of these techniques can enhance the visual richness of
a scene with very little data.

New Procedures and Functions

void ColorTableEXT(

enum target,

enum internalFormat,

sizei width,

enum format,

enum type,

const void *data);

void ColorSubTableEXT(

enum target,

sizei start,

sizei count,

enum format,

enum type,

const void *data);

void GetColorTableEXT(

enum target,

enum format,

enum type,

void *data);

void GetColorTableParameterivEXT(

enum target,

enum pname,

3Dlabs Software Release Note

Page 10

int *params);

void GetColorTableParameterfvEXT(

enum target,

enum pname,

float *params);

New Tokens

Accepted by the internalformat parameter of TexImage1D, and TexImage2D:

COLOR_INDEX1_EXT 0x80E2

COLOR_INDEX2_EXT 0x80E3

COLOR_INDEX4_EXT 0x80E4

COLOR_INDEX8_EXT 0x80E5

COLOR_INDEX12_EXT 0x80E6

COLOR_INDEX16_EXT 0x80E7

Accepted by the pname parameter of GetColorTableParameterivEXT and GetColorTableParameterfvEXT:

COLOR_TABLE_FORMAT_EXT 0x80D8

COLOR_TABLE_WIDTH_EXT 0x80D9

COLOR_TABLE_RED_SIZE_EXT 0x80DA

COLOR_TABLE_GREEN_SIZE_EXT 0x80DB

COLOR_TABLE_BLUE_SIZE_EXT 0x80DC

COLOR_TABLE_ALPHA_SIZE_EXT 0x80DD

COLOR_TABLE_LUMINANCE_SIZE_EXT 0x80DE

COLOR_TABLE_INTENSITY_SIZE_EXT 0x80DF

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None

Additions to Chapter 3 of the GL Specification (Rasterization)

Section 3.6.4, ‘Pixel Transfer Operations,’ subsection ‘Color Index Lookup,’ point two is modified from ‘The groups will be
loaded as an image into texture memory’ to ‘The groups will be loaded as an image into texture memory and the
internalformat parameter is not one of the color index formats from table 3.8.’

Section 3.8, ‘Texturing,’ subsection ‘Texture Image Specification’ is modified as follows:

The portion of the first paragraph discussing interpretation of format, type and data is split from the portion discussing target,
width and height. The target, width and height section now ends with the sentence ‘Arguments width and height specify the
image’s width and height.’

3Dlabs Software Release Note

Page 11

The format, type and data section is moved under a subheader ‘Direct Color Texture Formats’ and begins with ‘If
internalformat is not one of the color index formats from table 3.8,’ and continues with the existing text through the
internalformat discussion.

After that section, a new section ‘Paletted Texture Formats’ has the text:

If format is given as COLOR_INDEX then the image data is composed of integer values representing indices into a
table of colors rather than colors themselves. If internalformat is given as one of the color index formats from table
3.8 then the texture will be stored internally as indices rather than undergoing index-to-RGBA mapping as would
previously have occurred. In this case the only valid values for type are BYTE, UNSIGNED_BYTE, SHORT,
UNSIGNED_SHORT, INT and UNSIGNED_INT.

The image data is unpacked from memory exactly as for a DrawPixels command with format of COLOR_INDEX
for a context in color index mode. The data is then stored in an internal format derived from internalformat. In this
case the only legal values of internalformat are COLOR_INDEX1_EXT, COLOR_INDEX2_EXT,
COLOR_INDEX4_EXT, COLOR_INDEX8_EXT, COLOR_INDEX12_EXT and COLOR_INDEX16_EXT and
the internal component resolution is picked according to the index resolution specified by internalformat. Any excess
precision in the data is silently truncated to fit in the internal component precision.

An application can determine whether a particular implementation supports a particular paletted format (or any
paletted formats at all) by attempting to use the paletted format with a proxy target.

Table 3.8 should be augmented with a column titled ‘Index bits.’ All existing formats have zero index bits. The following
formats are added with zeroes in all existing columns:

Name Index bits

COLOR_INDEX1_EXT 1

COLOR_INDEX2_EXT 2

COLOR_INDEX4_EXT 4

COLOR_INDEX8_EXT 8

COLOR_INDEX12_EXT 12

COLOR_INDEX16_EXT 16

At the end of the discussion of level the following text should be added:

All mipmapping levels share the same palette. If levels are created with different precision indices then their internal
formats will not match and the texture will be inconsistent, as discussed above.

In the discussion of internalformat for CopyTexImage, at end of the sentence specifying that 1, 2, 3 and 4 are illegal there
should also be a mention that paletted internalformat values are illegal.

At the end of the width, height, format, type and data section under TexSubImage there should be an additional sentence:

If the target texture has an color index internal format then format may only be COLOR_INDEX.

After the Alternate Image Specification Commands section, a new ‘Palette Specification Commands’ section should be added.

Paletted textures require palette information to translate indices into full colors. The command

3Dlabs Software Release Note

Page 12

void ColorTableEXT(enum target, enum internalformat, sizei width, enum format,

enum type, const void *data);

is used to specify the format and size of the palette for paletted textures. target specifies which texture is to have its
palette changed and may be one of TEXTURE_1D, TEXTURE_2D, PROXY_TEXTURE_1D or
PROXY_TEXTURE_2D. internalformat specifies the desired format and resolution of the palette when in its
internal form. internalformat can be any of the values legal for TexImage internalformat although implementations
are not required to support palettes of all possible formats. width controls the size of the palette and must be a power
of two greater than or equal to one. format and type specify the number of components and type of the data given by
data. format can be any of the formats legal for DrawPixels although implementations are not required to support all
possible formats. type can be any of the types legal for DrawPixels except GL_BITMAP.

Data is taken from memory and converted just as if each palette entry were a single pixel of a 1D texture. Pixel
unpacking and transfer modes apply just as with texture data. After unpacking and conversion the data is translated
into a internal format that matches the given format as closely as possible. An implementation does not, however,
have a responsibility to support more than one precision for the base formats.

If the palette’s width is greater than than the range of the color indices in the texture data then some of the palettes
entries will be unused. If the palette’s width is less than the range of the color indices in the texture data then the
most-significant bits of the texture data are ignored and only the appropriate number of bits of the index are used
when accessing the palette.

Specifying a proxy target causes the proxy texture’s palette to be resized and its parameters set but no data is
transferred or accessed.

Portions of the current palette can be replaced with

void ColorSubTableEXT(enum target, sizei start, sizei count, enum format,

enum type, const void *data);

target can be any of the non-proxy values legal for ColorTableEXT. start and count control which entries of the
palette are changed out of the range allowed by the internal format used for the palette indices. count is silently
clamped so that all modified entries all within the legal range. format and type can be any of the values legal for
ColorTableEXT. The data is treated as a 1D texture just as in ColorTableEXT.

In the ‘Texture State and Proxy State’ section the palette data should be added in as a third category of texture state. After the
discussion of properties, the following should be added:

Next there is the texture palette. All textures have a palette, even if their internal format is not color index. A
texture’s palette is initially one RGBA element with all four components set to 1.0.

The sentence mentioning that proxies do not have image data or properties should be extended with ‘or palettes.’

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations and the Framebuffer)

None

Additions to Chapter 5 of the GL Specification (Special Functions)

None

Additions to Chapter 6 of the GL Specification (State and State Requests)

In the section on GetTexImage, the sentence saying ‘The components are assigned among R, G, B and A according to’ should
be changed to be

3Dlabs Software Release Note

Page 13

If the internal format of the texture is not a color index format then the components are assigned among R, G, B, and
A according to Table 6.1. Specifying COLOR_INDEX for format in this case will generate the error
INVALID_ENUM. If the internal format of the texture is color index then the components are handled in one of two
ways depending on the value of format. If format is not COLOR_INDEX, the texture’s indices are passed through
the texture’s palette and the resulting components are assigned among R, G, B, and A according to Table 6.1. If
format is COLOR_INDEX then the data is treated as single components and processed through the color index pixel
transfer modes rather than RGBA. Components are taken starting...

Following the GetTexImage section there should be a new section:

GetColorTableEXT is used to get the current texture palette.

void GetColorTableEXT(enum target, enum format, enum type, void *data);

GetColorTableEXT retrieves the texture palette of the texture given by target. target can be any of the non-proxy
targets valid for ColorTableEXT. format and type are interpreted just as for ColorTableEXT. All textures have a
palette by default so GetColorTableEXT will always be able to return data even if the internal format of the texture
is not a color index format.

Palette parameters can be retrieved using

void GetColorTableParameterivEXT(enum target, enum pname, int *params);

void GetColorTableParameterfvEXT(enum target, enum pname, float *params);

target specifies the texture being queried and pname controls which parameter value is returned. Data is returned in
the memory pointed to by params.

Querying COLOR_TABLE_FORMAT_EXT returns the internal format requested by the most recent
ColorTableEXT call or the default. COLOR_TABLE_WIDTH_EXT returns the width of the current palette.
COLOR_TABLE_RED_SIZE_EXT, COLOR_TABLE_GREEN_SIZE_EXT,
COLOR_TABLE_BLUE_SIZE_EXT and COLOR_TABLE_ALPHA_SIZE_EXT return the actual size of the
components used to store the palette data internally, not the size requested when the palette was defined.

Revision History
Original draft, revision 0.5, December 20, 1995 (drewb)

Created

Minor revisions and clarifications, revision 0.6, January 2, 1996 (drewb)

Replaced all request-for-comment blocks with final text based on implementation.

Minor revisions and clarifications, revision 0.7, Feburary 5, 1996 (drewb)

Specified the state of the palette color information when existing data is replaced by new data.

Clarified behavior of TexPalette on inconsistent textures.

Major changes due to ARB review, revision 0.8, March 1, 1996 (drewb)

Switched from using TexPaletteEXT and GetTexPaletteEXT to using SGI’s ColorTableEXT routines. Added
ColorSubTableEXT so equivalent functionality is available.

Allowed proxies in all targets.

Changed PALETTE?_EXT values to COLOR_INDEX?_EXT. Added support for one and two bit palettes. Removed
PALETTE_INDEX_EXT in favor of COLOR_INDEX.

Decoupled palette size from texture data type. Palette size is controlled only by ColorTableEXT.

3Dlabs Software Release Note

Page 14

APPENDIX C
Windows NT OpenGL Group

OpenGL EXT_BGRA Extension Specification
Name

EXT_bgra

Name Strings

GL_EXT_bgra

Dependencies

EXT_abgr affects the definition of this extension

EXT_cmyka affects the definition of this extension

EXT_color_table affects the definition of this extension

EXT_color_subtable affects the definition of this extension

Overview

EXT_bgra extends the list of host-memory color formats. Specifically, it provides formats which match the memory layout of
Windows DIBs so that applications can use the same data in both Windows API calls and OpenGL pixel API calls.

New Procedures and Functions

None

New Tokens

Accepted by the <format> parameter of DrawPixels, GetTexImage,

ReadPixels, TexImage1D, TexImage2D, ColorTableEXT and ColorSubTableEXT:

 BGR_EXT 0x80E0

 BGRA_EXT 0x80E1

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the GL Specification (Rasterization)

Two entries are added to table 3.5 (DrawPixels and ReadPixels formats). The new table is:

3Dlabs Software Release Note

Page 15

 Name Type Elements Target Buffer

 COLOR_INDEX Index Color Index Color

 STENCIL_INDEX Index Stencil value Stencil

 DEPTH_COMPONENT Component Depth value Depth

 RED Component R Color

 GREEN Component G Color

 BLUE Component B Color

 ALPHA Component A Color

 RGB Component R, G, B Color

 RGBA Component R, G, B, A Color

 LUMINANCE Component Luminance value Color

 LUMINANCE_ALPHA Component Luminance value, A Color

 ABGR_EXT Component A, B, G, R Color

 CMYK_EXT Component Cyan value Color

Magenta value,

Yellow value,

Black value

 CMYKA_EXT Component Cyan value, Color

Magenta value,

Yellow value,

Black value, A

 BGR_EXT Component B, G, R Color

 BGRA_EXT Component B, G, R, A Color

 Table 3.5: DrawPixels and ReadPixels formats. The third column

 gives a description of and the number and order of elements in a

 group.

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations and the Framebuffer)

The new format is added to the discussion of Obtaining Pixels from the Framebuffer. It should read " If the <format> is one
of RED, GREEN, BLUE, ALPHA, RGB, RGBA, ABGR_EXT, BGR_EXT, BGRA_EXT, LUMINANCE,
LUMINANCE_ALPHA, CMYK_EXT, or CMYKA_EXT, and the GL is in color index mode, then the color index is
obtained."

The new format is added to the discussion of Index Lookup. It should read "If <format> is one of RED, GREEN, BLUE,
ALPHA, RGB, RGBA, ABGR_EXT, BGR_EXT, BGRA_EXT, LUMINANCE, LUMINANCE_ALPHA, CMYK_EXT, or
CMYKA_EXT, then the index is used to reference 4 tables of color components:

PIXEL_MAP_I_TO_R, PIXEL_MAP_I_TO_G, PIXEL_MAP_I_TO_B, and

3Dlabs Software Release Note

Page 16

PIXEL_MAP_I_TO_A."

Additions to Chapter 5 of the GL Specification (Special Functions)

None.

Additions to Chapter 6 of the GL Specification (State and State Requests)

None.

Dependencies on EXT_abgr

If EXT_abgr is not implemented, then references to ABGR_EXT in this specification are void.

Dependencies on EXT_cmyka

If EXT_cmyka is not implemented, then references to CMYK_EXT and CMYKA_EXT in this specification are void.

Dependencies on EXT_color_table

If EXT_color_table is not implemented, then references to ColorTableEXT in this specification are void.

Dependencies on EXT_color_subtable

If EXT_color_subtable is not implemented, then references to ColorSubTableEXT in this specification are void.

Revision History

3Dlabs Software Release Note

Page 17

APPENDIX D
OpenGL Texture Object Extension Support

This appendix describes the programming steps required of OpenGL applications that need to switch between
textures without resorting to display lists (in order to avoid downloading the texture data each time
glTexImage1D/2D is invoked). The implementation is based upon the texture object extension of version 1.0
and adopted as standard in version 1.1 (refer to Appendix E for further details).

Unlike display list textures which depend on the texture parameter state of the default immediate mode 1D
and 2D texture targets, texture objects maintain their own separate copy of all texture state (such as wrap
modes, min/mag filters etc. including for palette textures, the colour lut). By selecting a texture object to be
the current texture (referred to as ‘binding’), all subsequent OpenGL commands such as glTexImage1/2D and
glTexParameter will affect the state of that texture object only, until a different texture object is made the new
target. The following code fragment should make this process clear.

// declare suitable function pointers for calling the texture object routines

typedef void (APIENTRY * PFNGLBINDTEXTUREEXTPROC) (GLenum target, GLuint texture);

typedef void (APIENTRY * PFNGLGENTEXTURESEXTPROC) (GLsizei n, GLuint *textures);

typedef void (APIENTRY * PFNGLDELTEXTURESEXTPROC) (GLsizei n, GLuint *textures);

PFNGLBINDTEXTUREEXTPROC fpglBindTextureEXT;

PFNGLGENTEXTURESEXTPROC fpglGenTexturesEXT;

PFNGLDELTEXTURESEXTPROC fpglDeleteTexturesEXT;

// bind the function pointer by passing the name of the function as a string

fpglBindTextureEXT = (PFNGLBINDTEXTUREEXTPROC) wglGetProcAddress("glBindTextureEXT");

fpglGenTexturesEXT = (PFNGLGENTEXTURESEXTPROC) wglGetProcAddress("glGenTexturesEXT");

fpglDeleteTexturesEXT =
(PFNGLDELTEXTURESEXTPROC) glGetProcAddress("glDeleteTexturesEXT");

// texture objects are given unique handles (their name or identifier)

// here we have a 4-bit palette texture, a large non-palette texture (512x256)

// and a small texture (64x64)

GLuint palTexObj;

GLuint largeTexObj;

GLuint smallTexObj;

// obtain a free texture object handle

fpglGenTexturesEXT(1, &palTexObj);

// make this the current texture target

3Dlabs Software Release Note

Page 18

// Note the first time we bind to a object handle, OpenGL creates a new texture

// parameter state record in an internal table. Assuming valid texel data

// has been downloaded for this object, subsequent binds will use this texture

// for rendering

fpglBindTextureEXT(GL_TEXTURE_2D, palTexObj);

// download the texels for this object

glTexImage2D(GL_TEXTURE_2D, 0, GL_COLOR_INDEX4_EXT, palTexObjWidth,

 palTexObjHeight, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE,

 palTexObjImageBuffer);

// and the palette lut

fpglColorTableEXT(GL_TEXTURE_2D, GL_RGBA, 16, GL_RGBA, GL_UNSIGNED_BYTE,
 palTexObjLUT);

// set filter modes

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

// setup the large texture (3 component)

fpglGenTexturesEXT(1, &largeTexObj);

fpglBindTextureEXT(GL_TEXTURE_2D, largeTexObj);

glTexImage2D(GL_TEXTURE_2D, 0, 3, largeTexObjWidth, largeTexObjHeight,

 0, GL_RGB, GL_UNSIGNED_BYTE,

 largeTexObjImageBuffer);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

// setup the small texture (4 component with alpha)

fpglGenTexturesEXT(1, &smallTexObj);

fpglBindTextureEXT(GL_TEXTURE_2D, smallTexObj);

glTexImage2D(GL_TEXTURE_2D, 0, 4, smallTexObjWidth, smallTexObjHeight,

 0, GL_RGBA, GL_UNSIGNED_BYTE,

 smallTexObjImageBuffer);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

// and so on, you get the idea

// now lets switch between textures for rendering

glEnable(GL_TEXTURE_2D);

3Dlabs Software Release Note

Page 19

fpglBindTextureEXT(GL_TEXTURE_2D, palTexObj);

// all textured primitives will now use the palette texture object

// with nearest-neighbour filtering

myDrawDisplay();

fpglBindTextureEXT(GL_TEXTURE_2D, largeTexObj);

// all textured primitives will now use the large texture object

// with linear filtering

myDrawDisplay();

fpglBindTextureEXT(GL_TEXTURE_2D, smallTexObj);

// all textured primitives will now use the small texture object

// and now back to nearest-neighbour filtering

myDrawDisplay();

// etc.

// free up texture memory when finished

fpglDeleteTexturesEXT(1, &palTexObj);

fpglDeleteTexturesEXT(1, &largeTexObj);

fpglDeleteTexturesEXT(1, &smallTexObj);

3Dlabs Software Release Note

Page 20

APPENDIX E
OpenGL Texture Object Extension Specification

Name
EXT_texture_object

Name Strings
GL_EXT_texture_object

Version
 $Date: 1995/06/17 03:38:44 $ $Revision: 1.26 $

Number
20

Dependencies
EXT_texture3D affects the definition of this extension

Overview
This extension introduces named texture objects. The only way to name a texture in GL 1.0 is by defining it as a single
display list. Because display lists cannot be edited, these objects are static. Yet it is important to be able to change the
images and parameters of a texture.

Issues
Should the dimensions of a texture object be static once they are changed from zero? This might simplify the management
of texture memory. What about other properties of a texture object?

No.

Reasoning
Previous proposals overloaded the <target> parameter of many Tex commands with texture object names, as well as the
original enumerated values. This proposal eliminated such overloading, choosing instead to require an application to bind
a texture object, and then operate on it through the binding reference. If this constraint ultimately proves to be
unacceptable, we can always extend the extension with additional binding points for editing and querying only, but if we
expect to do this, we might choose to bite the bullet and overload the <target> parameters now.

Commands to directly set the priority of a texture object and to query the resident status of a texture object are included. I
feel that binding a texture object would be an unacceptable burden for these management operations. These commands
also allow queries and operations on lists of texture objects, which should improve efficiency.

 GenTexturesEXT does not return a success/failure boolean because it should never fail in practice.

3Dlabs Software Release Note

Page 21

New Procedures and Functions

 void GenTexturesEXT(sizei n, uint* textures);

 void DeleteTexturesEXT(sizei n, const uint* textures);

 void BindTextureEXT(enum target, uint texture);

 void PrioritizeTexturesEXT(sizei n, const uint* textures, const clampf* priorities);

 boolean AreTexturesResidentEXT(sizei n, const uint* textures, boolean* residences);

 boolean IsTextureEXT(uint texture);

New Tokens

 Accepted by the <pname> parameters of TexParameteri, TexParameterf,
 TexParameteriv, TexParameterfv, GetTexParameteriv, and GetTexParameterfv:

TEXTURE_PRIORITY_EXT 0x8066

 Accepted by the <pname> parameters of GetTexParameteriv and
 GetTexParameterfv:

TEXTURE_RESIDENT_EXT 0x8067

 Accepted by the <pname> parameters of GetBooleanv, GetIntegerv,
 GetFloatv, and GetDoublev:

TEXTURE_1D_BINDING_EXT 0x8068
TEXTURE_2D_BINDING_EXT 0x8069
TEXTURE_3D_BINDING_EXT 0x806A

Additions to Chapter 2 of the 1.0 Specification (OpenGL Operation)
 None

Additions to Chapter 3 of the 1.0 Specification (Rasterization)
 Add the following discussion to section 3.8 (Texturing). In addition to the default textures TEXTURE_1D,

TEXTURE_2D, and TEXTURE_3D_EXT, it is possible to create named 1, 2, and 3-dimensional texture objects. The
name space for texture objects is the unsigned integers, with zero reserved by the GL.

3Dlabs Software Release Note

Page 22

 A texture object is created by binding an unused name to TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D_EXT. This
binding is accomplished by calling BindTextureEXT with <target> set to TEXTURE_1D, TEXTURE_2D, or
TEXTURE_3D_EXT, and <texture> set to the name of the new texture object.

 When a texture object is bound to a target, the previous binding for that target is automatically broken.

 When a texture object is first bound it takes the dimensionality of its target. Thus, a texture object first bound to
TEXTURE_1D is 1-dimensional; a texture object first bound to TEXTURE_2D is 2-dimensional, and a texture object first
bound to TEXTURE_3D_EXT is 3-dimensional. The state of a 1-dimensional texture object immediately after it is first
bound is equivalent to the state of the default TEXTURE_1D at GL initialization. Likewise, the state of a 2-dimensional
or 3-dimensional texture object immediately after it is first bound is equivalent to the state of the default TEXTURE_2D or
TEXTURE_3D_EXT at GL initialization. Subsequent bindings of a texture object have no effect on its state. The error
INVALID_OPERATION is generated if an attempt is made to bind a texture object to a target of different dimensionality.

 While a texture object is bound, GL operations on the target to which it is bound affect the bound texture object, and queries
of the target to which it is bound return state from the bound texture object. If texture mapping of the dimensionality of the
target to which a texture object is bound is active, the bound texture object is used.

 By default when an OpenGL context is created, TEXTURE_1D, TEXTURE_2D, and TEXTURE_3D_EXT have 1, 2, and
3-dimensional textures associated with them. In order that access to these default textures not be lost, this extension treats
them as though their names were all zero. Thus the default 1-dimensional texture is operated on, queried, and applied as
TEXTURE_1D while zero is bound to TEXTURE_1D. Likewise, the default 2-dimensional texture is operated on,
queried, and applied as TEXTURE_2D while zero is bound to TEXTURE_2D, and the default 3-dimensional texture is
operated on, queried, and applied as TEXTURE_3D_EXT while zero is bound to TEXTURE_3D_EXT.

 Texture objects are deleted by calling DeleteTexturesEXT with <textures> pointing to a list of <n> names of texture object
to be deleted. After a texture object is deleted, it has no contents or dimensionality, and its name is freed. If a texture
object that is currently bound is deleted, the binding reverts to zero. DeleteTexturesEXT ignores names that do not
correspond to textures objects, including zero.

 GenTexturesEXT returns <n> texture object names in <textures>. These names are chosen in an unspecified manner, the
only condition being that only names that were not in use immediately prior to the call to GenTexturesEXT are considered.
Names returned by GenTexturesEXT are marked as used (so that they are not returned by subsequent calls to
GenTexturesEXT), but they are associated with a texture object only after they are first bound (just as if the name were
unused).

 An implementation may choose to establish a working set of texture objects on which binding operations are performed
with higher performance. A texture object that is currently being treated as a part of the working set is said to be resident.
AreTexturesResidentEXT returns TRUE if all of the <n> texture objects named in <textures> are resident, FALSE
otherwise. If FALSE is returned, the residence of each texture object is returned in <residences>. Otherwise the contents
of the <residences> array are not changed. If any of the names in <textures> is not the name of a texture object, FALSE is
returned, the error INVALID_VALUE is generated, and the contents of <residences> are indeterminate. The resident
status of a single bound texture object can also be queried by calling GetTexParameteriv or GetTexParameterfv with
<target> set to the target to which the texture object is bound, and <pname> set to TEXTURE_RESIDENT_EXT. This is
the only way that the resident status of a default texture can be queried.

3Dlabs Software Release Note

Page 23

 Applications guide the OpenGL implementation in determining which texture objects should be resident by specifying a
priority for each texture object. PrioritizeTexturesEXT sets the priorities of the <n> texture objects in <textures> to the
values in <priorities>. Each priority value is clamped to the range [0.0, 1.0] before it is assigned. Zero indicates the
lowest priority, and hence the least likelihood of being resident. One indicates the highest priority, and hence the greatest
likelihood of being resident. The priority of a single bound texture object can also be changed by calling TexParameteri,
TexParameterf, TexParameteriv, or TexParameterfv with <target> set to the target to which the texture object is bound,
<pname> set to TEXTURE_PRIORITY_EXT, and <param> or <params> specifying the new priority value (which is
clamped to [0.0,1.0] before being assigned). This is the only way that the priority of a default texture can be specified.
(PrioritizeTexturesEXT silently ignores attempts to prioritize nontextures, and texture zero.)

Additions to Chapter 4 of the 1.0 Specification (Per-Fragment Operations and the Frame Buffer)
None

Additions to Chapter 5 of the 1.0 Specification (Special Functions)
 BindTextureEXT and PrioritizeTexturesEXT are included in display lists.
 All other commands defined by this extension are not included in display lists.

Additions to Chapter 6 of the 1.0 Specification (State and State Requests)

 IsTextureEXT returns TRUE if <texture> is the name of a valid texture object. If <texture> is zero, or is a non-zero value
that is not the name of a texture object, or if an error condition occurs, IsTextureEXT returns FALSE.

 Because the query values of TEXTURE_1D, TEXTURE_2D, and TEXTURE_3D_EXT are already defined as booleans
indicating whether these textures are enabled or disabled, another mechanism is required to query the binding associated
with each of these texture targets. The name of the texture object currently bound to TEXTURE_1D is returned in
<params> when GetIntegerv is called with <pname> set to TEXTURE_1D_BINDING_EXT. If no texture object is
currently bound to TEXTURE_1D, zero is returned. Likewise, the name of the texture object bound to TEXTURE_2D or
TEXTURE_3D_EXT is returned in <params> when GetIntegerv is called with <pname> set to
TEXTURE_2D_BINDING_EXT or TEXTURE_3D_BINDING_EXT. If no texture object is currently bound to
TEXTURE_2D or to TEXTURE_3D_EXT, zero is returned.

 A texture object comprises the image arrays, priority, border color, filter modes, and wrap modes that are associated with
that object. More explicitly, the state list

TEXTURE,
TEXTURE_PRIORITY_EXT
TEXTURE_RED_SIZE,
TEXTURE_GREEN_SIZE,
TEXTURE_BLUE_SIZE,
TEXTURE_ALPHA_SIZE,
TEXTURE_LUMINANCE_SIZE,
TEXTURE_INTENSITY_SIZE,
TEXTURE_WIDTH,
TEXTURE_HEIGHT,
TEXTURE_DEPTH_EXT,
TEXTURE_BORDER,
TEXTURE_COMPONENTS,

3Dlabs Software Release Note

Page 24

TEXTURE_BORDER_COLOR,
TEXTURE_MIN_FILTER,
TEXTURE_MAG_FILTER,
TEXTURE_WRAP_S,
TEXTURE_WRAP_T,
TEXTURE_WRAP_R_EXT

 composes a single texture object.

 When PushAttrib is called with TEXTURE_BIT enabled, the priorities, border colors, filter modes, and wrap modes of the
currently bound texture objects are pushed, as well as the current texture bindings and enables. When an attribute set that
includes texture information is popped, the bindings and enables are first restored to their pushed values, then the bound
texture objects have their priorities, border colors, filter modes, and wrap modes restored to their pushed values.

Dependencies on EXT_texture3D
If EXT_texture3D is not supported, then all references to 3D textures in this specification are invalid.

Errors
INVALID_VALUE is generated if GenTexturesEXT parameter <n> is negative.

 INVALID_VALUE is generated if DeleteTexturesEXT parameter <n> is negative.

 INVALID_ENUM is generated if BindTextureEXT parameter <target> is not TEXTURE_1D, TEXTURE_2D, or
TEXTURE_3D_EXT.

 INVALID_OPERATION is generated if BindTextureEXT parameter <target> is TEXTURE_1D, and parameter <texture>
is the name of a 2-dimensional or 3-dimensional texture object.

 INVALID_OPERATION is generated if BindTextureEXT parameter <target> is TEXTURE_2D, and parameter <texture>
is the name of a 1-dimensional or 3-dimensional texture object.

 INVALID_OPERATION is generated if BindTextureEXT parameter <target> is TEXTURE_3D_EXT, and parameter
<texture> is the name of a 1-dimensional or 2-dimensional texture object.

 INVALID_VALUE is generated if PrioritizeTexturesEXT parameter <n> negative.

 INVALID_VALUE is generated if AreTexturesResidentEXT parameter <n> is negative.

 INVALID_VALUE is generated by AreTexturesResidentEXT if any of the names in <textures> is zero, or is not the name
of a texture.

 INVALID_OPERATION is generated if any of the commands defined in this extension is executed between the execution
of Begin and the corresponding execution of End.

New State

3Dlabs Software Release Note

Page 25

 Get Value Get Command Type Initial Value
Attribute

 TEXTURE_1D IsEnabled B FALSE
texture/enable

 TEXTURE_2D IsEnabled B FALSE
texture/enable

 TEXTURE_3D_EXT IsEnabled B FALSE
texture/enable

 TEXTURE_1D_BINDING_EXT GetIntegerv Z+ 0
texture

 TEXTURE_2D_BINDING_EXT GetIntegerv Z+ 0
texture

 TEXTURE_3D_BINDING_EXT GetIntegerv Z+ 0
texture

 TEXTURE_PRIORITY_EXT GetTexParameterfv n x Z+ 1
texture

 TEXTURE_RESIDENT_EXT AreTexturesResidentEXTn x B unknown
 -

 TEXTURE GetTexImage n x levels x I null
-

 TEXTURE_RED_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0
-

 TEXTURE_GREEN_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0
 -

 TEXTURE_BLUE_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0
-

 TEXTURE_ALPHA_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0
 -

 TEXTURE_LUMINANCE_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0
-

 TEXTURE_INTENSITY_SIZE_EXT GetTexLevelParameteriv n x levels x Z+ 0
-

 TEXTURE_WIDTH GetTexLevelParameteriv n x levels x Z+ 0
-

 TEXTURE_HEIGHT GetTexLevelParameteriv n x levels x Z+ 0
-

 TEXTURE_DEPTH_EXT GetTexLevelParameteriv n x levels x Z+ 0
-

 TEXTURE_4DSIZE_SGIS GetTexLevelParameteriv n x levels x Z+ 0
-

 TEXTURE_BORDER GetTexLevelParameteriv n x levels x Z+ 0
-

 TEXTURE_COMPONENTS (1D and 2D) GetTexLevelParameteriv n x levels x Z42 1
 -

3Dlabs Software Release Note

Page 26

 TEXTURE_COMPONENTS (3D and 4D) GetTexLevelParameteriv n x levels x Z38 LUMINANCE
 -

 TEXTURE_BORDER_COLOR GetTexParameteriv n x C 0, 0, 0, 0
texture

 TEXTURE_MIN_FILTER GetTexParameteriv n x Z7
NEAREST_MIPMAP_LINEAR texture

 TEXTURE_MAG_FILTER GetTexParameteriv n x Z3 LINEAR
texture

 TEXTURE_WRAP_S GetTexParameteriv n x Z2 REPEAT
texture

 TEXTURE_WRAP_T GetTexParameteriv n x Z2 REPEAT
texture

 TEXTURE_WRAP_R_EXT GetTexParameteriv n x Z2 REPEAT
texture

 TEXTURE_WRAP_Q_SGIS GetTexParameteriv n x Z2 REPEAT
texture

New Implementation Dependent State
None

3Dlabs Software Release Note

Page 27

APPENDIX F
3Dlabs OpenGL Driver State Extension Specification

Name
3DLabs_Driver_State

Overview

When lighting is being used and negative scaling factors are applied to the modeling matrix it can produce
undesirable effects with respect to the lighting operation when the objective of the negative scale factors is that
of mirroring an object about an axes. This extension is to allow reasonable visual results to be obtained when
viewing a model exported by Autocad, along with it’s own matrix.

The operation of the extension is simple - and when the extension is enabled will cause the normalisation of
normals to flip any negative normal component. This state is held on a per rendering context basis.

The mechanism for enabling/disabling this capability is through a more generic enable/disable function using
the routines below (allowing for future expansion).

Name Strings
GL_3DLabs_Driver_State (this is the string that should be exported)

Dependencies
None

New Procedures and Functions
int DriverStateSet3Dlabs (int target, int value);

Where target is FORCE_POSITIVE_NORMALS_3DLABS and value should either be GL_FALSE (for off)
or GL_TRUE (for on). The DriverGetState3Dlabs function will return the current value of the parameter.

GL_TRUE will be returned if the call succeeded. GL_FALSE will be returned if the call failed because the
‘target’ value was not recognised.
int DriverStateGet3Dlabs(int target);

The returned value will be the current value of the ‘target’ piece of state.

Mechanism for using the extensions.

The extension’s presence can be detected by searching the supported extensions string for named string. If the
string is present, then the user can locate the two extension functions by calling the wglGetProcAddress()
routine to get a pointer to the function.

// Declarations of function pointers..
int (APIENTRY *MyDriverSetState) (int, int);
int (APIENTRY *MyDriverGetState) (int);

// Get the addresses of the functions

3Dlabs Software Release Note

Page 28

MyDriverSetState = (void *) wglGetProcAddress(“glDriverSetState3Dlabs”);

MyDriverGetState = (void *) wglGetProcAddress(“glDriverGetState3Dlabs”);

// Switch into the mode to force the normals to be positive - assuming that the pointers
// are not NULL.
MyDriverSetState (FORCE_POSITIVE_NORMALS_3DLABS, GL_TRUE);

// Switch out of the state.
MyDriverSetState (FORCE_POSITIVE_NORMALS_3DLABS, GL_FALSE);

Values

#define FORCE_POSITIVE_NORMALS_3DLABS 0x01

